If it's not what You are looking for type in the equation solver your own equation and let us solve it.
n^2-n=200
We move all terms to the left:
n^2-n-(200)=0
We add all the numbers together, and all the variables
n^2-1n-200=0
a = 1; b = -1; c = -200;
Δ = b2-4ac
Δ = -12-4·1·(-200)
Δ = 801
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{801}=\sqrt{9*89}=\sqrt{9}*\sqrt{89}=3\sqrt{89}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-1)-3\sqrt{89}}{2*1}=\frac{1-3\sqrt{89}}{2} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-1)+3\sqrt{89}}{2*1}=\frac{1+3\sqrt{89}}{2} $
| g(4)=-2(4)+2 | | p−4=34 | | w−870/–23=–4 | | n−6=15 | | 2(p+3)-7=4p | | 20+30y=900 | | 63=9k6,7,8 | | 0.2+x=0.6-1.2x | | 0.6x^2+6x-1200=0 | | x-151=0 | | (D4+18D2+81)y=0 | | 7y–6=22 | | 2(5x+3)=4x+18x+18 | | (D4-2D3+2D2-2D+1)y=0 | | 4(3c-7)+3(5c-7)=56 | | (b+3)/5=(3b+3) | | 2x^2+20x=60 | | 5x–4=5(x-1)+1 | | 6(x-1)^2=324 | | 7x-9x=4x+10 | | 2x+1=0,5x+4 | | t-4/14=1/2 | | 8x–4=3x+16 | | {125}^{x}=25 | | (b+3)/5=(3b+3( | | 3(x-8)”2”=147 | | 3(x-8)2=147 | | (5t+10)/(t²-4)=0 | | 2x^2=794.94 | | 3*n+2*n=5*n | | (3t+4)/(t+2)=0 | | 0.05x=0.06 |